612 research outputs found

    Disc galaxies with multiple triaxial structures. II. JHK surface photometry and numerical simulations

    Full text link
    We present detailed JHK surface photometry with ellipse fits of 13 galaxies selected from previous optical observations as likely candidates for having a secondary bar or a triaxial bulge within the primary bar. We have found 7 double-barred galaxies, 3 double-barred galaxies with an additional intermediate structure with twisted isophotes, and 3 galaxies with a bar and central twisted isophotes. A global analysis of the structural parameter characteristics in the I- and K-bands is presented. Various numerical models of galaxies with bars within bars are also analysed using the ellipse fitting technique and compared to the observations. A thorough review of the possible hypotheses able to explain this phenomenon is given with emphasis on the most likely ones.Comment: 12 pages, AATEX. Accepted for publication in A&A. Large color postscript figures omitted (Figs. 1), figures 2-9 included; gzip'ed postscript files of the paper and Figs. 1 available via anonymous ftp at ftp://obsftp.unige.ch/pub/fri/aasjhk/ , files fri_aasjhk.ps.gz and ngc*.ps.g

    Direct Confirmation of Two Pattern Speeds in the Double Barred Galaxy NGC 2950

    Get PDF
    We present surface photometry and stellar kinematics of NGC 2950, which is a nearby and undisturbed SB0 galaxy hosting two nested stellar bars. We use the Tremaine-Weinberg method to measure the pattern speed of the primary bar. This also permits us to establish directly and for the first time that the two nested bars are rotating with different pattern speeds, and in particular that the rotation frequency of the secondary bar is higher than that of the primary one.Comment: 12 pages, 4 figures. To appear in ApJ Letter

    Photometric and dynamic evolution of an isolated disc galaxy simulation

    Full text link
    We present a detailed analysis of the evolution of a simulated isolated disc galaxy. The simulation includes stars, gas, star formation and simple chemical yields. Stellar particles are split in two populations: the old one is present at the beginning of the simulation and is calibrated according to various ages and metallicities; the new population borns in the course of the simulation and inherits the metallicity of the gas particles. The results have been calibrated in four wavebands with the spectro-photometric evolutionary model GISSEL2000 (Bruzual & Charlot 1993). Dust extinction has also been taken into account. A rest-frame morphological and bidimensional photometric analysis has been performed on simulated images, with the same tools as for observations. The effects of the stellar bar formation and the linked star formation episode on the global properties of the galaxy (mass and luminosity distribution, colours, isophotal radii) have been analysed. In particular, we have disentangled the effects of stellar evolution from dynamic evolution to explain the cause of the isophotal radii variations. We show that the dynamic properties (e.g. mass) of the area enclosed by any isophotal radius depends on the waveband and on the level of star formation activity. It is also shown that the bar isophotes remain thinner than mass isodensities a long time (> 0.7 Gyr) after the maximum of star formation rate. We show that bar ellipticity is very wavelength dependent as suggested by real observations. Effects of dust extinction on photometric and morphological measurements are systematically quantified.Comment: 14 pages, 16 figures (13 in eps, 3 in jpg format). Accepted for publication in A&

    Mass Density of Individual Cobalt Nanowires

    Full text link
    The mass density of nanowires is determined using in-situ resonance frequency experiments combined with quasi-static nanotensile tests. Our results reveal a mass density of 7.36 g/cm3 on average which is below the theoretical density of bulk cobalt. Also the density of electrodeposited cobalt nanowires is found to decrease with the aspect ratio. The results are discussed in terms of the measurement accuracy and the microstructure of the nanowires.Comment: 3 Figure

    Near-Infrared Adaptive Optics Imaging of the Central Regions of Nearby Sc Galaxies. II. NGC 247 and NGC 2403

    Full text link
    J, H, and K' images obtained with the Canada-France-Hawaii Telescope adaptive optics system are used to investigate the star-forming histories of the central regions of the Sc galaxies NGC 247 and NGC 2403. The brightest resolved red stars within 15 arcsec of the nucleus of each galaxy are red supergiants, indicating that the central few hundred parsecs of these galaxies experienced star formation within the last ~ 0.1 Gyr. However, when averaged over Gyr time scales, the star-forming histories of the inner disks of these galaxies have been remarkably similar, as expected if the long-term evolution of disks is defined by local characteristics such as mass density. It is demonstrated that NGC 247 and NGC 2403, like M33, harbour nuclear star clusters with stellar contents that differ from the surrounding central light concentrations. The nucleus of NGC 2403 is significantly bluer than that of the other two galaxies and the K-band surface brightnesses near the centers of NGC 247 and NGC 2403 are 1 -- 2 mag per square arcsec lower than in M33. Finally, it is noted that young or intermediate-age nuclear star clusters are a common occurence in nearby spirals, indicating that nuclear star formation in these objects is either continuous or episodic on time scales of 0.1 - 1 Gyr.Comment: 27 pages of text and 14 figures; to appear in the Astronomical Journa

    Induced Nested Galactic Bars Inside Assembling Dark Matter Halos

    Full text link
    We investigate the formation and evolution of nested bar systems in disk galaxies in a cosmological setting by following the development of an isolated dark matter (DM) and baryon density perturbation. The disks form within the assembling triaxial DM halos and the feedback from the stellar evolution is accounted for in terms of supernovae and OB stellar winds. Focusing on a representative model, we show the formation of an oval disk and of a first generation of nested bars with characteristic sub-kpc and a few kpc sizes. The system evolves through successive dynamical couplings and decouplings, forcing the gas inwards and settles in a state of resonant coupling. The inflow rate can support a broad range of activity within the central kpc, from quasar- to Seyfert-types, supplemented by a vigorous star formation as a by-product. The initial bar formation is triggered in response to the tidal torques from the triaxial DM halo, which acts as a finite perturbation. This first generation of bars does not survive for more than 4--5 Gyr: by that time the secondary bar has totally dissolved, while the primary one has very substantially weakened, reduced to a fat oval. This evolution is largely due to chaos introduced by the interaction of the multiple non-axisymmetric components.Comment: 4 pages, 4 figures, 1 mpeg animation. To be published by the Astrophysical Journal Letters. The animation can be found at http://www.pa.uky.edu/~shlosman/research/galdyn/movies.html Replaced with an updated version (small text corrections

    The Molecular Gas in the Circumnuclear Region of Seyfert Galaxies

    Full text link
    Sub-arcsecond IRAM Plateau de Bure mm-interferometric observations of the 12CO (2-1) line emission in the Seyfert~1 NGC 3227 and the Seyfert~2 NGC 1068 have revealed complex kinematic systems in the inner 100 pc to 300 pc that are not consistent with pure circular motion in the host galaxies. Modeling of these kinematic systems with elliptical orbits in the plane of the host galaxy (representing gas motion in a bar potential) is a possible solution but does not reproduce all features observed. A better description of the complex kinematics is achieved by circular orbits which are tilted out of the plane of the host galaxy. This could indicate that the thin circumnuclear gas disk is warped. In the case of NGC 1068 the warp model suggests that at a radius of about 70 pc, the gas disk is oriented edge-on providing material for the obscuration of the AGN nucleus. The position-velocity diagrams show rising rotation curves at r 2 x 10^7 M_solar for NGC 3227 and > 10^8 M_solar for NGC 1068 within the central 25 pc.Comment: 14 pages, Ap.J. letter, accepte
    • …
    corecore